\chapter Euler's formula \section Complex numbers \label sec:comlex One can introduce \em{complex numbers} by considering so-called \em{imaginary unit} $i$, such that: \equation \label eq:i i^2 = -1. \definition \emph{Complex number} is a number of a form $x+iy$, where $x, y \in \mathbb R$. \section Exponent of complex number \label sec:exp \theorem \label thm:1 Let $x$ be a real number. Then \equation \label eq:main e^{ix} = \cos x+i\sin x. \proof Let us recall series for exponent, sine and cosine: \align \item \label eq:series-exp e^z &= 1 + z + \frac{z^2}{2} + \frac{z^3}{3!} + \ldots = \sum_{k=0}^\infty \frac{z^k}{k!} \item \label eq:series-sin \sin z &= z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \ldots \item \label eq:series-cos \cos z &= 1 - \frac{z^2}{2} +\frac{z^4}{4!} - \frac{z^6}{6!} + \ldots It follows from \ref{eq:i} that \eq i^k=\begin{cases} 1 & \text{for } k = 4m\\\\ i & \text{for } k = 4m+1\\\\ -1 & \text{for } k = 4m+2\\\\ -i & \text{for } k = 4m+3 \end{cases} Let us put $z=ix$ into \ref{eq:series-exp}. For even $k$, $(ix)^k$ is real and for odd $k$ it is imaginary. Moreover, the sign alternates when one pass to the next term. It follows immediately that the real part of \ref{eq:series-exp} is equal to \ref{eq:series-sin} and the imaginary part is equal to \ref{eq:series-cos} with substitution $z=ix$. This finished the proof of \ref[Euler's formula\nonumber][thm:1]. \chapter Corollary It follows from \ref[Theorem][thm:1] from \ref[Section][sec:exp] that \eq \sin x = \frac{e^{ix}-e^{-ix}}{2i}. Therefore, \align \item \nonumber \sin 2x &= \frac{e^{2ix}-e^{-2ix}}{2i} = \frac{1}{2i}((e^{ix})^2-(e^{-ix})^2)= \item \nonumber &\frac{1}{2i}(e^{ix}-e^{-ix})(e^{ix}+e^{-ix})=2\sin x \cos x. \question Express $\cos x$ in terms of exponents. (Click on pencil to check the correct answer.) \quiz \choice $(e^{ix}+e^{-ix})/(2i)$ \comment No, this is complex number! \choice \correct $(e^{ix}+e^{-ix})/2$ \comment Yes! That's right! \choice $(e^{ix}-e^{-ix}))/(2)$ \comment No, that's $-i\sin x$. \exercise Express $\cos 2x$ in terms of $\sin x$ and $\cos x$.
preview